

Electrochemical

Formaldehyde Sensor

(Model: ME2-CH₂O-16×15)

Manual V1.0

Valid from 2014-11-20

Zhengzhou Winsen Electronics Technology Co., Ltd

Statement

This manual copyright belongs to Zhengzhou Winsen Electronics Technology Co., LTD. Without the written permission, any part of this manual shall not be copied, translated, stored in database or retrieval system, also can't spread through electronic, copying, record ways.

Thanks for purchasing our product. In order to let customers use it better and reduce the faults caused by misuse, please read the manual carefully and operate it correctly in accordance with the instructions. If users disobey the terms or remove, disassemble, change the components inside of the sensor, we shall not be responsible for the loss.

The specific such as color, appearance, sizes ...etc., please in kind prevail.

We are devoting ourselves to products development and technical innovation, so we reserve the right to improve the products without notice. Please confirm it is the valid version before using this manual. At the same time, users' comments on optimized using way are welcome.

Please keep the manual properly, in order to get help if you have questions during the usage in the future.

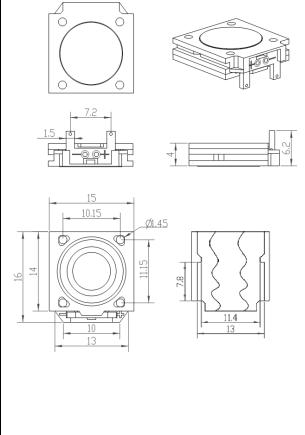
Zhengzhou Winsen Electronics Technology CO., LTD

ME2-CH₂O-16×15 Formaldehyde Sensor

ME2-CH2O-16×15 electrochemical sensor detect gas concentration by measuring current based on the electrochemical principle, which utilizes the electrochemical oxidation process of target gas on the working electrode inside the electrolytic cell, the current produced in electrochemical reaction of the target gas are in direct proportion with its concentration while following Faraday law, then concentration of the gas could be get by measuring value of current.

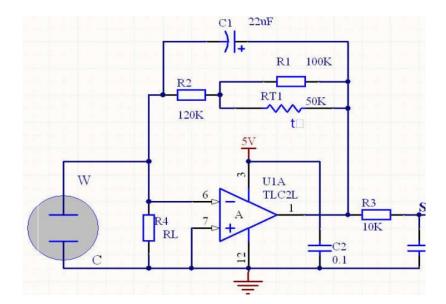
Features:

- * Low consumption
- * High precision
- * High sensitivity
- * Wide linear range
- * Good anti-interference ability
- * Excellent repeatability and stability


Application

Detecting CH₂O in residential occasion and environmental protection areas

Technical Parameter


External dimension

Item	Parameter	
Detection gas	Formaldehyde (CH2O)	
Measurement Range	0-5 ppm	
Max detecting	20 ppm	
concentration		
Sensitivity	(0.45±0.15) μA/ppm	
Resolution ratio	≤0.02ppm	
Response time (T ₉₀)	≤60S	
Load resistance	100Ω	
(recommended)		
Repeatability	<2% output value	
Output Linearity	linear	
Zero drift(-20℃~40℃)	≤0.2ppm	
Humidity Range	15 % ~90 % RH	
Temperature Range	-20℃~50℃	
Pressure range	normal atmosphere ± 10%	
Anticipated using life	2 years(in air)	

Basic circuit

Characterization

Fig3. Features of Sensitivity, response and recovery

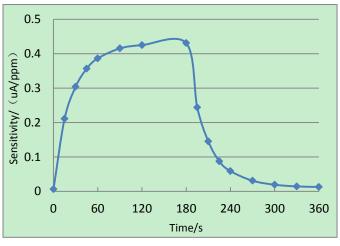


Fig4. Data graph of concentration linearity features

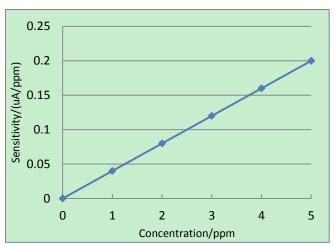
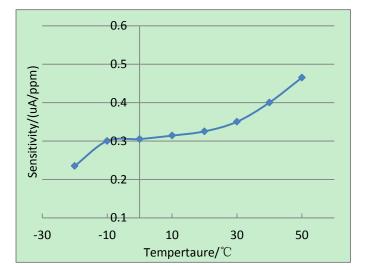
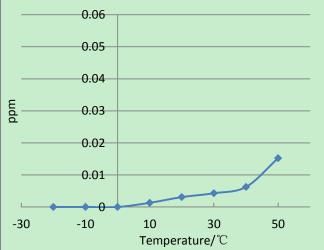
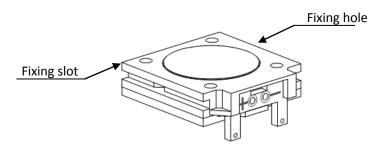


Fig5. Sensor output Change upon Variable Temperature


Fig6.Sensor Zero Drift upon variable temperature

There are two ways to fix the ME2-CH2O-16×15 sensor

Fix the sensor in PCB or instrument shells through fixing hole by using nut Fix the sensor through the fixing slot

Cross interference gas

ME2-CH2O- Φ 16 sensor also responds to other gases besides CH2O. Below are the response characteristics of interferential gases

Gas	Concentration/ppm	Equal to HCHO
CH2O	5ppm	5ppm
С6Н6	10ppm	0.1ppm
C7H8	10ppm	0.46ppm
СНЗСООН	200ppm	0.52ppm
C2H5OH	100ppm	40.6ppm
H2S	50ppm	3ppm
СО	200ppm	0.64ppm

Application Notes:

- Do not break and bend the PCB terminals;
- To preheat for no less than 48hs before using;
- Do not take apart the sensor, otherwise electrolyte leakage can cause sensor damage;
- Sensor shall avoid organic solvent, coatings, medicine, oil and high concentration gases;
- All electrochemical sensors shall not be encapsulated completely by resin materials, and shall not immerse in pure oxygen environment, otherwise, it will damage the function of sensor;
- All ME sensors shall not be applied in corrosive gas environment, or the sensor will be damaged;
- Please test the zero point of gas sensors in clean atmosphere;
- Sensors shall be avoided to face the gas, which flow directly from front side;
- Blowhole of the sensor should not be blocked and polluted, which will cause the sensitivity decrease;

- Do not open and damage the above waterproof breathable membrane of the sensor;
- Excessive impact or vibration should be avoided;
- Do not use the sensor when the shell is damaged;
- It takes some time for the sensor to return to normal state after applied in high concentration gas;
- Working electrode and reference electrode of the sensor shall be in short circuit when stored;
- Please do not encapsulate the sensor using melt adhesive and sealant, whose curing temperature is higher than 80 $\,^{\circ}$ C;
- Please do not expose and use the sensor in high concentration alkaline gas for a long time.