TECHNICAL DATA

MQ-3 GAS SENSOR

FEATURES

- * High sensitivity to alcohol and small sensitivity to Benzine .
- * Fast response and High sensitivity
- * Stable and long life
- * Simple drive circuit

APPLICATION

They are suitable for alcohol checker, Breathalyser.

SPECIFICATIONS

A. Standard work condition

Symbol	Parameter name	Technical condition	Remarks
Vc	Circuit voltage	5V±0.1	AC OR DC
V_{H}	Heating voltage	5V±0.1	ACOR DC
$R_{\rm L}$	Load resistance	200Κ Ω	
R _H	Heater resistance	33 Ω ±5%	Room Tem
P_{H}	Heating consumption	less than 750mw	

B. Environment condition

Symbol	Parameter name	Technical condition	Remarks
Tao	Using Tem	-10℃-50℃	
Tas	Storage Tem	-20°C-70°C	
R_{H}	Related humidity	less than 95%Rh	
O_2	Oxygen concentration	21%(standard condition)Oxygen	minimum value is
1000	(*************************************	concentration can affect sensitivity	over 2%

C. Sensitivity characteristic

	n n	m 1 : 1	D 1
Symbol	Parameter name	Technical parameter	Remarks
Rs	Rs Sensing Resistance $1M\Omega - 8M\Omega$		Detecting concentration
	4070	(0.4mg/L alcohol)	scope:
		(,	0.05mg/L—10mg/L
а			Alcohol
(0.4/1 mg/L)	Concentration slope rate	≤0.6	
Standard	Temp: 20°C ±2°C	Vc:5V±0.1	
detecting	Humidity: 65%±5%	Vh: 5V±0.1	
condition			
Preheat time	Over 24 h		

D. Structure and configuration, basic measuring circuit

			57 —1		
	Parts	Materials		$A \longrightarrow B$	т
1	Gas sensing layer	SnO ₂	4 -4	н — Н	Vc: E - B - A - T B
2	Electrode	Au		XiX	Ar or OHI OHI OF B
3	Electrode line	Pt	3 3	A B	DC 5v 4 g Vout
4	Heater coil	Ni-Cr alloy	6	3.5	±0.1v
5	Tubular ceramic	Al ₂ O ₃		H	H r► RL
6	Anti-explosion network	Stainless steel gauze (SUS316 100-mesh)	7	A — (13) — B	The state of the s
7	Clamp ring	Copper plating Ni	N 8	, Light ,	<u> </u>
8	Resin base	Bakelite			
9	Tube Pin	Copper plating Ni	20mm 9	I _H	Fig.2
			Fig. 1	:	

Structure and configuration of MQ-3 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed by micro AL₂O₃ ceramic tube, Tin Dioxide (SnO₂) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-3 have 6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

Electric parameter measurement circuit is shown as Fig.2

E. Sensitivity characteristic curve

Fig.3 is shows the typical sensitivity characteristics of the MQ-3 for several gases. in their: Temp: $20^{\circ}\mathrm{C}$, Humidity: 65%, O_2 concentration 21% RL= $200\mathrm{k}\,\Omega$ Ro: sensor resistance at $0.4\mathrm{mg/L}$ of Alcohol in the clean air. Rs:sensor resistance at various concentrations of gases.

Fig.2 sensitivity characteristics of the MQ-3

Fig.4 is shows the typical dependence of the MQ-3 on temperature and humidity.

Ro: sensor resistance at 0.4mg/L of Alcohol in air at 33%RH and 20 °C Rs: sensor resistance at 0.4mg/L of Alcohol at different temperatures and humidities.

SENSITVITY ADJUSTMENT

Resistance value of MQ-3 is difference to various kinds and various concentration gases. So, When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 0.4mg/L (approximately 200ppm) of Alcohol concentration in air and use value of Load resistancethat(R_L) about 200 K Ω (100K Ω to 470 K Ω).

When accurately measuring, the proper alarm point for the gas detector should be determined after considering the temperature and humidity influence.