<제품 사양 및 구조설명>

1. 제품명 : 가스센서 모듈(GAS DETECTOR MODULE)

2. 모델명 : DS-GD-100

3. 대상가스 : LPG,LNG,메탄,프로판,H2(가연성)

4. 센서사양: 접촉연소식(일본 네모토사) NAP-55A

* 정격전압 : 2.5V(120mA)

5. 회로전압: DC9V~12V

6. 소비전력: 100~150mA

7. 출 력: DC 0~5V

8. 크 기: 110mm*60mm

9. 구조설명

USER'S MANUAL

HOT-WIRE TYPE GAS SENSOR NAP-55A & 50A

(For All Combustible Gases, Low Power Consumption)

CONTENTS

- 1. Features & applications
- 2. Specifications
- 3. Gas sensitivity characteristics
- 4. Response characteristics
- 5. Voltage dependency characteristics
- 6. Temperature characteristics
- 7. Humidity characteristics
- 8. Evaluation on sensor
- 9. Drawings

1. General

Nemoto's NAP-55A & 50A are miniature-sized hot-wire type gas sensors for every combustible gases. These new sensors are smaller than our NAP-2A sensor and consume much less power. (Approx. half a wattage of NAP-2A). These sensors respond 30% quicker than NAP-2A.

NAP-55A is sensitive to all combustible gases, while NAP-50A has lower sensitivity only to alcohol. NAP-55A would be suitable for general applications, and NAP-50A would be the best for residential gas detectors which should not be affected by noise gases other than fuel gases.

1) Features

- * Excellent stability.
- * Remarkable reproducibility and accuracy.
- * Linear output signal for natural (city) gas concentration.
- * Superior response characteristics.
- * Miniature size for flexibility in the design of detectors.

2) Applications

- * Gas densitometers
- * City gas leakage detectors

2. Specifications

- 1) Voltage supplied to sensor bridge ; D.C. ; 2.50 + /- 0.25 V A.C. ; 2.50 + /- 0.25 V (r.m.s. 50 60 Hz)
- 3) Ambient temperature & humidity during operation ; Temperature ; -10°C to $+50^{\circ}\text{C}$ Humidity ; Less than 95% RH
- 4) Ambient temperature & humidity during storage ; Temperature ; -20°C to +600C Humidity ; Less than 95% RH

3. Gas sensitivity

Fig. 1 Gas sensitivity of NAP-55A

Fig. 2 Gas sensitivity of NAP-50A

4. Response characteristics (Measurement example ; Comparison to NAP-2A)

 $$\operatorname{\mathtt{Fig.}}$ 3 The times are ones to be required for 90% response

5. Voltage dependency characteristics

Voltage dependency on NAP-55A & 50A gas sensitivity

Voltage dependency on output in air

Fig. 6

6. Temperature characteristics

Fig. 7

7. Humidity characteristics

Fig. 8

8. Evaluation of sensors

(1) Testing equipment

The following is and outline of a test system.

Fig. 9

Remarks:

- 1) Test chamber ;
- * Metal or glass which does not generate or absorb gases is desirable as test chamber material.
 - * The volume of the chamber should be larger than 1 liter / sensor.
 - 2) Gas densitometer ;
 - * An infrared gas densitometer is recommended for measuring gas concentration.
 - 3) Air agitation;
- * The air inside the chamber should be agitated, but not so as to directly blow on the sensor. Air flow should be less than $0.5 \,\mathrm{m/sec}$.
 - 4) Power supply;
- * Sensors can be operated using either D.C. or A.C., but for optimal measurement accuracy, use of a D.C. voltage stabilizer is recommended.

- 5) Voltmeter;
- * A voltmeter with greater than 100K ohm impedance is sufficient for measuring sensor bridge out put voltage.
 - 6) Ventilation ;
- * Before proceeding with a subsequent test, the air inside the test chamber should be ventilated using a ventilator which has a capacity of more than 10 times the volume of the chamber per minute.
 - 7) Placement of sensors in a test chamber;
- * Sensors should be placed in a chamber in a same attitude. (Normally horizontal). Changing the attitude creates different thermal convection, and may cause inaccurate measurement results.

(2) Adjustment of gas concentration

Gas concentration in a test chamber is usually adjusted by a volumetric method injecting iso-butane gas using a syringe, or by monitoring with an infrared gas densitometer.

Gas concentration adjustment by a volume method can be calculated according to the following formula.

$$V (0) = Vi \times C \times 10^{-6} \frac{273 + Tr}{273 + Tc}$$

V ; Volume of gas to be injected

Vi ; Inside volume of a chamber (ml)

C ; Gas concentration to be adjusted

Tr ; Room temperature (°C)

Tc ; Temperature inside a chamber (°C)

(3) Measurement

- 1) Preparatory aging;
- * Before measurement, sensors should be supplied with the specified voltage at least for more than 1 hour.
- 2) Measurement;
- * After confirming that the output voltage level has stabilized, the output value in air (Va) is measured.
- * A test gas is injected into the test chamber and wait for an even dispersion of the gas inside the chamber. (Usually 1 min. or more)
 - * Output voltage in gas (Vg) is measured.
 - * Thoroughly ventilate the test chamber with a fresh air from outside.

(4) Other remarks

- * Sensors should not be dropped or subjected to strong shocks.
- * Refrain from use in an atmosphere that may contain poisonous or corrosive gases.
- * Do not soak sensors in water.

9. Drawings

Fig. 10