
USB-I2C USB to I2C Communications Module

Technical Specification

The USB-I2C module provides a complete interface between your PC and
the I2C bus. The module is self powered from the USB cable and can
supply up to 70mA at 5v for external circuitry from a standard 100mA USB
port. The module is an I2C master only, not a slave.

First Step - Get The Drivers
The USB-I2C module uses the FTDI FT232R USB chip to handle all the
USB protocols. The documentation provided by FTDI is very complete,
and is not duplicated here. Before using the USB-I2C, you will need to
install FTDI's Virtual COM Port (VCP) Drivers. These drivers appear to
the system as an extra Com Port (in addition to any existing hardware
Com Ports). Application software accesses the USB device in the same
way as it would access a standard Windows Com Port using the Windows
VCOMM API calls or by using a Com Port Library. Drivers are available for
Windows, Apple, Linux and Open BSD systems directly from the FTDI
website. You should get and install the drivers now, before you connect
the USB-I2C to your computer. The Drivers page is here.

Which COM port?
After installing the drivers, and plugging in the USB-I2C module to a
spare USB port, you will want to know which COM port it has been
assigned to. This will vary from system to system depending on how
many COM ports you currently have installed. To find out where it is, right
click on your "My Computer" desktop icon and select the "Device
Manager" tab. Now scroll down and open the "Ports (COM & LPT)" tab.
You should see the USB serial port listed - COM2 in the example below.
If you want to change the COM port number - just right click on it, select
properties, select advanced and select the COM port number from the
available list. The COM port should be set up for 19200 baud, 8 data bits,
no parity and two stop bits.

Connections
The diagram below shows the I2C connections.

0v Gnd
The 0v Gnd pin must be connected to the 0v (Ground) on your I2C
device.

Input 1
The Input 1 pin is actually the processor reset line and is used in our
workshop to program the processor after final assembly. The reset
function has been disabled in software so that this pin may be used as
an input pin. It has a 47k pull-up resistor on the PCB, so if the input is
not required you can just ignore it.

SCL and SDA
These pins are the I2C bus connections. They should be connected

directly to the SCL and SDA pins on your I2C device. The USB-I2C
module is always a bus master, and is fitted with 4.7k pull-up resistors
on the PCB.

+5v
The +5v supply from the USB-I2C module can supply up to 70mA to
external devices. If your I2C device requires more than this, or has its
own supply, then leave the +5v pin unconnected. Do not apply your own
5v supply to this pin.

Commands
The USB-I2C responds to commands sent to it from the PC. There are
just three primary commands:
I2CD_CMD (0x53) - This allows you to read or write to I2C devices that
do not have internally addressable registers, such as the Philips PCF8574
I/O expander.
I2C_CMD (0x55) - This allows you to read or write to internally registered
devices such as EEPROM's or our own range of modules.
USB-I2C_CMD (0x5A) - A range of commands to the USB-I2C module,
generally to improve selected communications.

Writing to I2C devices without internally addressable registers
These include devices such as the Philips PCF8574 I/O expander.
Following the I2CD_CMD you send the devices I2C address and the data
byte.

This 3 byte sequence sets all bits of a PCF8574 I/O expander chip low.
All 3 bytes should be sent to the USB-I2C in one sequence. A gap will
result in the USB-I2C re-starting its internal command synchronization
loop and ignoring the message. After all bytes have been received the
USB-I2C performs the IC2 write operation out to the PCF8574 and sends
a single byte back to the PC. This returned byte will be 0x00 (zero) if the
write command failed and non-zero if the write succeeded. The PC
should wait for this byte to be returned (timing out after 500mS) before
proceeding with the next transaction.

Reading from I2C devices without internally addressable registers

Primary USB-I2C

command
Device Address +

R/W bit
The data byte

Byte Type I2CD_CMD Addr+R/W Data
Example 0x53 0x40 0x00

Meaning
Direct

Read/Write
command

PCF8574 I2C
address

Set all bits low

This is similar to writing, except that you should add 1 to the device
address to make it an odd number. To read from a PCF8574 at address
0x40, you would use 0x41 as the address. (When the address goes out
on the I2C bus, its the 1 in the lowest bit position that indicates a read
cycle is happening). Here is an example of reading the inputs on a
PCF8574 I/O expander:

The USB-I2C will perform the read operation on the I2C bus and send a
single byte (the PCF8574 inputs) back to the PC. The PC should wait for
the byte to be returned (timing out after 500mS) before proceeding with
the next transaction.

Writing to I2C devices with internally addressable registers
This includes almost all I2C devices. Following the I2C_CMD you send the
device I2C address, then the devices internal register address you want
to write to and the number of bytes you're writing. The maximum number
of data bytes should not exceed 60 so as not to overflow the USB-I2C's
internal buffer.

This 5 byte sequence starts an SRF08 at address 0xE0 ranging. All 5
bytes should be sent to the USB-I2C in one sequence. A gap will result in
the USB-I2C re-starting its internal command synchronization loop and
ignoring the message. After all bytes have been received the USB-I2C
performs the IC2 write operation out to the SRF08 and sends a single
byte back to the PC. This returned byte will be 0x00 (zero) if the write
command failed and non-zero if the write succeeded. The PC should
wait for this byte to be returned (timing out after 500mS) before
proceeding with the next transaction.
Here is another write example - this time an 8 byte sequence to initialize
the MD22 motor driver:

I2CD_CMD PCF8574 I2C address + Read bit
0x53 0x41

Primary

USB-I2C
command

Device
Address +
R/W bit

Device
internal
register

Number of
data bytes

The data
bytes

Byte Type I2C_CMD Addr+R/W Reg Byte Count Data
Example 0x55 0xE0 0x00 0x01 0x51

Meaning
Primary

USB-I2C
command

SRF08 I2C
address

SRF08
command

Reg

One
command

byte follows

Start
ranging in

cm

I2C_CMD
MD22 Mode

Data
byte MD22

Left
Motor

Right
Motor Fast

Again the USB-I2C will respond with non-zero if the write succeeded and
zero if it failed. A failure means that no acknowledge was received from
the I2C device.

Reading from I2C devices with internally addressable registers
This is similar to writing, except that you should add 1 to the device
address to make it an odd number. To read from an SRF08 at address
0xE0, you would use 0xE1 as the address. (When the address goes out
on the I2C bus, its the 1 in the lowest bit position that indicates a read
cycle is happening). The maximum number of data bytes requested
should not exceed 60 so as not to overflow the USB-I2C's internal buffer.
Here is an example of reading the two byte bearing from the CMPS03
compass module:

The USB-I2C will perform the read operation on the I2C bus and send
two bytes back to the PC - high byte first. The PC should wait for both
bytes to be returned (timing out after 500mS) before proceeding with the
next transaction.

USB-I2C Commands
The USB-I2C command format is shown below:

The USB-I2C commands are always a four byte sequence. They start
with the USB-I2C_CMD primary command which is followed by the USB-
I2C command itself. Two data bytes follow which can be any junk if not
used, but they must be included to make up the 4 byte command
sequence. These commands are:

Addr+R/W Reg count mode 1 StoppedStoppedacceleration
0x55 0xB0 0x00 0x04 0x01 0x00 0x00 0x02

I2C_CMD
CPMS03 I2C

address + Read
bit

CMPS03 bearing
register

Number of bytes
to read

0x55 0xC1 0x02 0x02

USB-I2C_CMD
USB-I2C
Command

Data 1 Data2

 0x5A See below
Command
Specific

Command
Specific

Hex Command
Bytes

returned
Purpose

0x01 REVISION 1
Returns the USB-I2C firmware revision

number

REVISION is used to read the USB-I2C firmware revision. It returns a
single byte indicating the revision number. The two data bytes are unused
and can be anything, but they must be sent.
NEW_ADDRESS command is used to change an SRF08's I2C address to a
different address. The new address should be in the first of the two data
bytes. The second data byte is unused and can be anything, but it must
be sent. Changing the address on the SRF08 requires 4 separate
transactions on the I2C bus. The USB-I2C know how to change an
SRF08's I2C address and just needs you to send it the new address using
this command. When using it, make sure you only have one SRF08
connected, otherwise you will set every SRF08 on the bus to the same
address. The single return byte is the new address sent back when the
task is complete.
UNUSED Unused - for CM02 compatibility only - returns 0x00.
SCAN This command is provided for CM02 compatibility. It assumes you
have an MD22 motor controller, a CMPS03 compass module and a
number of SRF08 rangefinders. SCAN1 assumes 1 SRF08, SCAN8
assumes 8 SRF08's. The two data bytes contain the Left and Right motor
speed values for the MD22 motor controller. After sending the new motor
speeds to the MD22, the USB-I2C will send a return frame comprising the
battery voltage (0x00 - see above). This is followed by two bytes of
compass bearing - high byte first, and then three bytes for each SRF08.
The first of the three bytes is the SRF08's light sensor reading. The next
two bytes is the range - high byte first.
For example, if the SCAN2 command is used, you would receive a 9 byte
return:

0x02 NEW_ADDRESS 1 Changes SRF08 I2C address

0x03 UNUSED 1
Unused - for CM02 compatibility only -

returns 0x00

0x04 SCAN1 6
Send motor data - return battery,

compass & sonar data
0x05 SCAN2 9 Same but for 2 SRF08's
0x06 SCAN3 12 3 SRF08's
0x07 SCAN4 15 4
0x08 SCAN6 21 6
0x09 SCAN8 27 8
0x0A SCAN12 39 12
0x0B SCAN16 51 All 16 possible SRF08's
0x10 SETPINS 1 Sets I/O pins high/low
0x11 GETPINS 1 Gets the status of I/O pins
0x12 GETAD 4 Gets Analogue value on I/O2 and I/O3

SRF08 SRF08 SRF08 SRF08

SRF08 data is always returned starting with address 0xE0, 0xE2, 0xE4 -
going up one address at a time until all requested SRF08's data has been
sent.
After sending the data back up to the PC, the USB-I2C automatically
issues a new ranging command to all SRF08s. The ranging command
used is 82 (0x52) which returns the results in uS. To convert to cm divide
by 58 and to convert to inches divide by 148.
SRF08 addresses should have been set up before running this command
and the MD22 should be initialized to the mode and acceleration
required. One more important feature. The SCAN command also sets up
a 500mS timer on the USB-I2C. If another SCAN command is not
received within this time, a command is automatically sent to the MD22 to
stop the motors. This is to prevent your robot wandering out of control if
it ventures outside of the range of the radio link.

LEDs
There are two status Leds on the USB-I2C. A red Led indicates power is
on and the green Led flashes briefly when a command is received. The
red Led can be turned on and off using the SETPINS command. See
below.

I/O Pins
If the USB-I2C module is not being used for I2C, it can be used as
general purpose I/O controller with three I/O lines. Input 1 is always an
input only pin and has a 47k pull-up resistor (not 4.7k like the others).
The other two can be input or output. The outputs are set high/low with
the SETPINS command. The pin is not actively driven high, it is released
and pulled high by a 4.7k resistor. Output low is actively driven and can
sink a maximum of 24mA. GETPINS will return the status of the I/O pins.
To use an I/O pin as an input, it must first have a 1 (high) written to it.
This will release the pin so that the 4.7k resistor will pull it high, it can
then be used as an input. Both SETPINS and GETPINS commands will
return the status of the I/O Pins, however, only SETPINS can change
them. The bits in the data byte written by SETPINS and returned by
SETPINS and GETPINS have the following format:

Battery
Volts

(reads
0x00)

Compass
bearing

high byte

Compass
bearing
low byte

SRF08
at 0xE0
Light

sensor

at 0xE0
Range
high
byte

at 0xE0
Range

low
byte

SRF08
at 0xE2
Light

sensor

at 0xE2
Range
high
byte

at 0xE2
Range

low
byte

7 6 5 4 3 2 1 0

x x x x I/O3 I/O2 Input1
Red
Led

The following command will turn the Red led off and make the I/O lines
high so they can be used as inputs:

Analogue Inputs
The USB-I2C module can also convert the analogue values on pins I/O2
and I/O3. Before doing this the I/O pins should be set high, effectively
making them inputs. Remember though that this is primarily a USB to I2C
interface and as such has 4k7 pull-up resistors. Take this into account
when connecting your analogue input.

The following command will fetch the analogue values:

With analogue data returned in the following format:

The analogue inputs use 10-bit conversion, so you will see values from 0
to 1024 (0x0000 to 0x03FF)

Note - you cannot mix I/O mode and I2C mode, I/O commands should
not be used when I2C devices are connected.

USB-I2C Test Software
To help you test and get the USB-I2C up and running quickly, we have
provided a couple of simple test programs. The first is for the USB-I2C
connected to an SRF08 ultrasonic ranger.

USB-I2C_CMD
SETPINS

Command
Data 1 Data2

 0x5A 0x10 0x0E 0x00 (unused)

USB-I2C_CMD GETAD Command Data 1 Data2
 0x5A 0x12 0x00 (unused) 0x00 (unused)

Byte 1 Byte 2 Byte 3 Byte 4
I/O2 High Byte I/O2 Low Byte I/O3 High Byte I/O3 Low Byte

The connector on the USB-I2C module may be soldered directly to the
SRF08 as shown, or you can use a cable if preferred. The USB-I2C
module can easily supply the 25mA peak of the SRF08. The software
automatically searches for the SRF08 and displays its I2C address, along
with revision number, range and light sensor reading. You can download
usb_i2c_srf08.exe and the C source code here.

The second is for testing I/O modes, and allows you to set/clr the I/O's
as well as read the digital and analogue inputs.

You can download usb_i2c_io.exe and the C source code here.

