CO₂ Sensor Module – HX-CWS0

Features

- Electrochemical type CO₂ gas sensor
- High reliability performance
- Long life time, 10 years
- Fast response time
- Compatible with UART
- Super compact size module
- Auto calibration
- Low power consumption
- Maintenance free
- Suitable to indoor environment.
- Wide Operating & storage temperature
- 9 Pin module
- Pin to Pin with W-Company, C-Company CO2 sensor (UART)

Applications

- Indoor air quality maintenance system
 - Home net room panel
 - Air conditioner
 - Air cleaner
 - Diffuser
 - Climate control system
 - Total heat exchanger
- IOT based indoor watching system
 - Security
 - Home automation
 - Set-top box
 - Lighting
 - Dash-Cam

CO₂ sensor overview

Aug. 2020

Sensor & electrical performance specification ($T_a = 25$ °C)

Parameters		Condition	Symbol	Min Typ		Max	Unit	
Gas	Target gas	-	T_Gas	CO ₂			-	
Data	Sensor type	-	EC		Electrochemical			
	Detection range	-	DD_R		400-5,000			
	Resolution	-	D _R		1	1		
	Accuracy	-	D _A	-40 ppm -3% of reading	After Starting 15 min ¹⁾²⁾	+40 ppm +3% of reading	%	
		-	D _{A3}	-70 ppm -5% of reading	10 min	+70 ppm +5% of reading		
		-	D _{A10}	-100 ppm - 10% of reading	3 min	+100 ppm +10% of reading		
Time	Response	-	T_Res	2min for 90% for diffusion sampling method				
	Warm-up	-	T_{WU}	1	3	-	min	
	Life-time	-	T _{LT}	10			Years	
Power	Input	-	V_{IN}	4.5	5	5.5	V	
	Current Consumption	-	P_{A}	-	0.12	0.15	Α	
	Warm-up consumption	-	P _W	0.35	0.6	0.75	W	
Output	Interface connections	-	O _C	UART				
	Sampling interval	-	T_{SPL}		1		Hz	
	Connector	-	CNT	2.0 pitch hole It depends				
Ambient	Operating Temp	-	От	-20	25	70	°C	
	Operating Humidity	No condensing @25℃	Он	0	-	95	%	
	Storage Temp	-	S _T	-40	25	105	°C	
	Storage Humidity	Pack in moisture proof bag	S _H	5	-	90	%	
Ca	libration	-	CAL	Not requi	Not required. and Self mode is ready			

Note

- 1) In normal IAQ applications (Air Cleaner, Indoor IAQ monitor), accuracy is defined after minimum 4 days with continuous operating.
- 2) The sensor is temp-compensation device. With rapid temperature changing, sensor don't show stable output.

Aug. 2020

EXSEN EXSEN Inc.

Sensor Characteristic graph

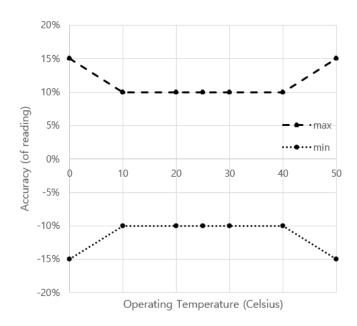


Fig. 1 Accuracy by temperature

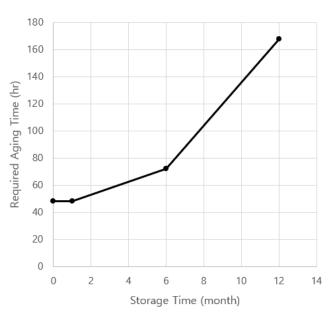


Fig. 2 Required aging time by storage time

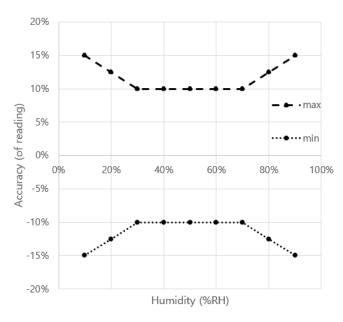


Fig. 3 Accuracy by Humidity

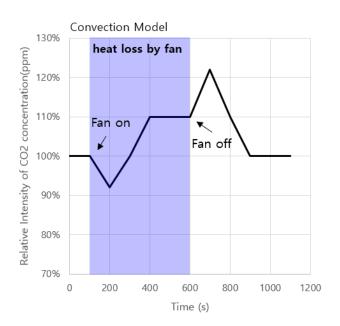


Fig. 4 Fluctuation by temperature changing

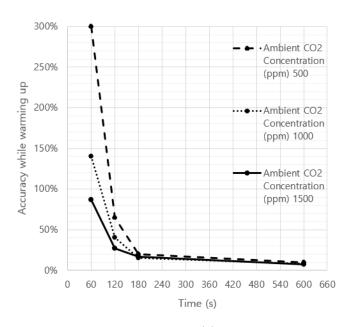


Fig. 5 Accuracy while warming up

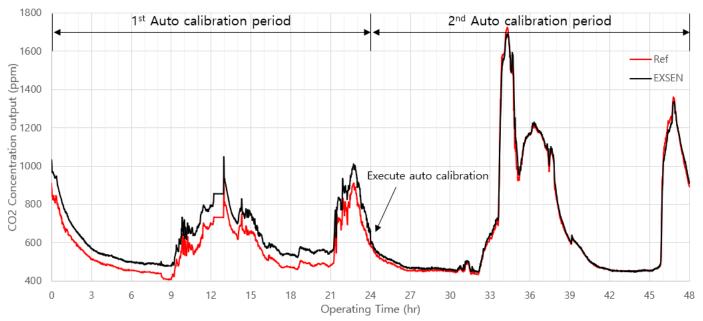
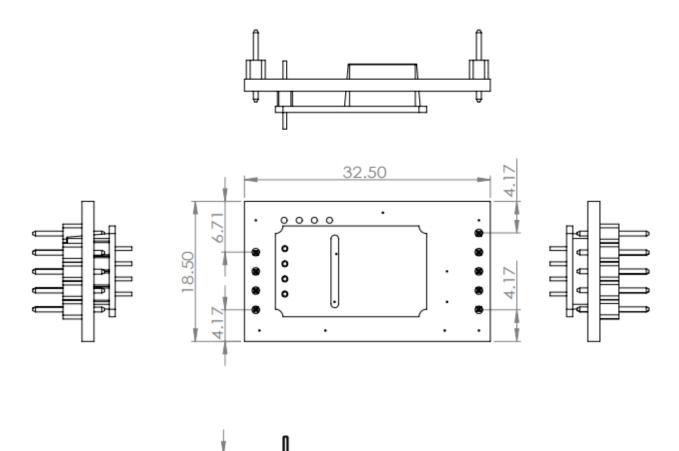



Fig. 6 Example of autocalibration

Module Overview

Aug. 2020

Theory of operation

Introduction

The CO_2 Sensor module is a gas sensor system that has been optimized for carbon dioxide. It is highly sensitive system including gas sensor and self-calibration. CO_2 sensor is operated by following 3 steps.

- 1. Warm-up
- 2. Normal operating
- 3. Calibration

Warm-up

Electrochemical CO_2 sensor is consisted with micro heater and sensing material. The sensing material should be heated for $1\sim15$ minutes to measure specific CO_2 level. About 15 minutes later, the module shows stable and correct value of CO_2 concentration.

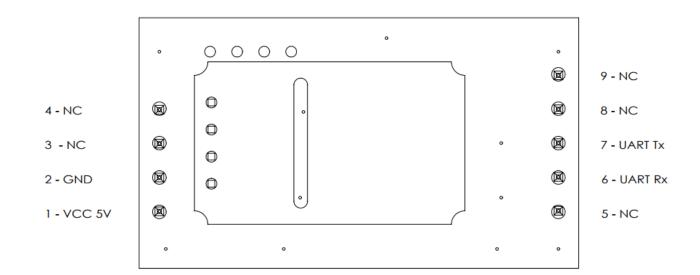
The module consumes about 0.5 W while warm-up. And after warming-up, it reduced to about 0.1W.

Normal operating

In continuous operation, CO_2 sensor module shows stable and linear signal by CO_2 concentration. If the module is turned off, warm-up is required again to measure CO_2 concentration after turning on.

Calibration

After applying power to the module, the measurement value may be deviated in 2 days. The deviation is related with installation environment. However, if the module is operated continuously over 2 days, the module learns about the installation environment and shows higher accuracy than specification sheet value by self-calibration logic.


Aug. 2020

Terminal descriptions

Connector is not specified. It will be discussed between customer and EXSEN. Basically, pinheader is attached like drawing.

Pin No.	Symbol	Description
1	VCC	Supply, 5V
2	GND	Ground
3	NC	NC
4	NC	NC
5	NC	NC
6	Rx	UART Rx
7	Тх	UART Tx
8	NC	NC
9	NC	NC

Aug. 2020

UART

(1) Interface

- UART

Baud rate: 9600 bpsCheck bit: NoneStop bit: 1 bit

- compatible with W company and C company UART protocol

(2) Protocol

W CO2 Read	Туре	0	1	2	3	4	5	6	7	8		
Master	LIEV	FF	1	96	0	0	0	0	0	79		
->Slave	HEX	FF	1	86	0	0	0	0	0	79		
Slave	HEX	FF	86	CO2	CO2	0	0	0	0	CS		
-> Master	ПЕЛ	ГГ	00	HIGH	LOW	U	U	U	U	CS		
	CS = 256 - sum(1:8)											
	Example (CS)											
	If CO2 = 550 (ppm),											
CS	CO2_HIGH = 1000 / 256 = 0x02											
	CO2_LOW = 1000 % 256 = 0x26											
	CS = 256 - (0x86 + 0x02 + 0x26 + 0x00 + 0x00 + 0x00 + 0x00)											
	= 256 - 0xAE											
	= 0x52											
C CO2 Read	Type	0	1	2	3	4	5	6	7	8		
Master	HEX	11	1	1	ED							
Slave	HEX	16	5	1	CO2 HIGH	CO2 LOW	0x00	0x00	CS			
	CS = 256 - sum(0:6)											
	Example											
	If CO2 = 550 (ppm),											
CS	CO2_HIGH = 1000 / 256 = 0x02											
CS	CO2_LOW = 1000 % 256 = 0x26											
	CS = 256 - (0x16 + 0x05 + 0x01 + 0x02 + 0x26 + 0x00 + 0x00)											
	= 256 - 0x44											

Example (CO2)

CO2_HIGH = 0x02, CO2_LOW = 0x26CO2 = $CO2_HIGH \times 256 + CO2_LOW$ = $2 \times 256 + 38$ = 500 (ppm)

Aug. 2020

Revision history

Rev	Date	Page	Details
No.			
R01	Aug	ALL	Initialize
	2020		

The product can be changed without notice. Before designing the structure of system, please contact EXSEN. The module dimension and electrical, general specification could be changed. (Contact info: ykkim@exsen.co.kr)

Notice

EXSEN Inc. (EXSEN) reserves the right to make changes to the products contained in this document to improve performance or for any other purpose, or to discontinue them without notice. Customers are advised to contact EXSEN to obtain the latest product information before placing orders or designing EXSEN products into systems.

EXSEN assumes no responsibility for the use of any products or circuits described in this document or customer product design, conveys no license, either expressed or implied, under any patent or other right, and makes no representation that the circuits are free of patent infringement. EXSEN further makes no claim as to the suitability of its products for any particular purpose, nor does EXSEN assume any liability arising out of the use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages.

EXSEN, the EXSEN logo are registered trademarks of EXSEN.