FCT3K0AB15FY

Main characteristics:

- Nominal current measurement: from ±3000A DC, AC
- Excellent linearity: 15 ppm
- High resolution
- Very low offset drift
- Overall accuracy at I_{PN} @ +25°C: ≤±0.01 %
- Wide frequency bandwidth up to 200 kHz (- 3 dB)
- ROHS Compliant

Features:

- DC, AC pulse currents' measurements with galvanic isolation
- Nano Crystal Fluxgate technology
- Electrostatic shield between primary and secondary circuit
- Bipolar Power supply ±15 Volt
- Operating temperature range from -40 to +85°C
- Wire Connector Type
- Current output

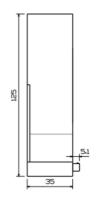
Standard compliance:

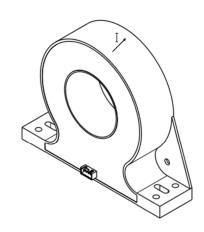
- Typical applications:
- Feedback element in precision current regulated devices (power supplies...)
- Precise and high stability inverters
- Medical equipment
- Energy measurement
- Power analyzers

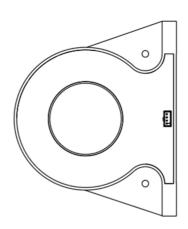
Remarks:

- Current overload capability
- Additional output indicating the transducer state

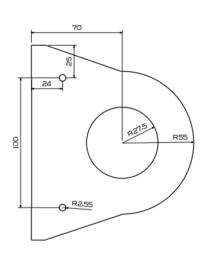
Specification

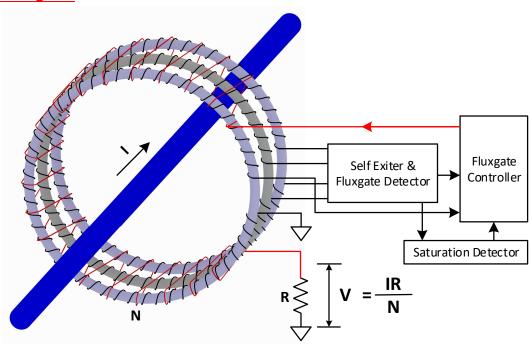

±3000A	A r.m.s.
±3200A	A peak
2	Ω
0.1	Ω
3000	Turn
3000/3000	Α
≤±0.01	%
≤±0.005	%
≤0.5	uA/°C
≤200	kHz
≤30	mA
≤8	Ω
3	kV
±15V	V dc
≤1	V
1.24	kg
-40 ~ +85	°C
-45 ~ +125	°C
	±3200A 2 0.1 3000 3000/3000 ≤±0.01 ≤±0.005 ≤0.5 ≤200 ≤30 ≤8 3 ±15V ≤1 1.24 -40 ~ +85

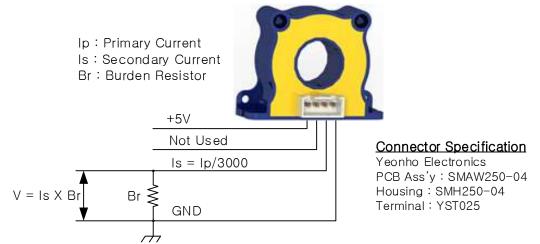

General data


- Plastic case and insulating resin are self-extinguishing.
- Fixing holes in the case molding for two positions at right angles
- ullet Direction of the current: A primary current flowing in the direction of the arrow results in a positive secondary output current from terminal C_{OUT} .

Dimensions


1:+15V 2:-15V 3: Cout 4: GND





Block diagram

- 3/4 -

Installation

^{*} The positive direction of the current from the front to the rear of the head (the front of the contactor).

(Secondary_Resistance + Measuring_Resistance) x Max_Secondary_Current + 4V = 15V Measuring_Resistance = (15 - 4) / Max_Secondary_Current - Secondary_Resistance Therefore, Meauring_Resistance = $11/(3200/3000) - 8 = 2 \Omega$

Caution

Be careful not to operate under $0.1\Omega\,$ burden resistor. The current sensor is damaged.