
>>> FCT100AB15AY

FCT100AB15AY

Main characteristics:

- Nominal current measurement: from ±100A DC, AC
- Excellent linearity: 15 ppm
- High resolution
- Very low offset drift
- Overall accuracy at I_{PN} @ +25°C: $\leq\pm0.01$ %
- Wide frequency bandwidth up to 200 kHz (- 3 dB)
- ROHS Compliant

Features:

- DC, AC pulse currents' measurements with galvanic isolation
- Nano Crystal Fluxgate technology
- Electrostatic shield between primary and secondary circuit
- Bipolar Power supply ±15 Volt
- Operating temperature range from -40 to +85°C
- Wire Connector Type
- Current output

Standard compliance:

- Typical applications:
- Feedback element in precision current regulated devices (power supplies...)
- Precise and high stability inverters
- Medical equipment
- Energy measurement
- Power analyzers

Remarks:

- Current overload capability
- Additional output indicating the transducer state

- 1/4 -

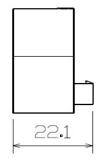
www.hisen-fluxgate.com

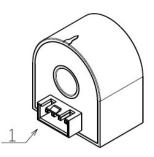
>>> HISEN TECH

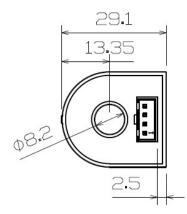
Specification

Nominal primary current (I _{PN})	±100	A r.m.s.
Measuring range @ ±15V (±5%)	±120	A peak
Max. measuring resistance @ I_P max & ±15V (±5%)	20	Ω
Min. measuring resistance @ I _{PN} & ±15V (±5%)	1	Ω
Turn number	1500	Turn
Secondary current at I _{PM}	100/1500=0.067	А
Accuracy at I _{PN} @ +25°C	≤±0.01	%
Offset current @ +25°C	≤±50	uA
Linearity	≤±0.005	%
Thermal drift coefficient @ -45 ~ +105°C	≤0.5	uA/°C
Bandwidth @ -3dB	≤200	kHz
Max. no-load consumption current @ ±15V (±5%)	≤20	mA
Secondary resistance @ +105°C	≤130	Ω
Dielectric strength Primary/Secondary @ 50Hz, 1min	3	kV
Supply voltage @ ±20%	±15V	V dc
Mass	0.18	kg
Operating temperature	-40 ~ +85	°C
Storage temperature	-45 ~ +125	°C

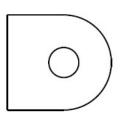
General data

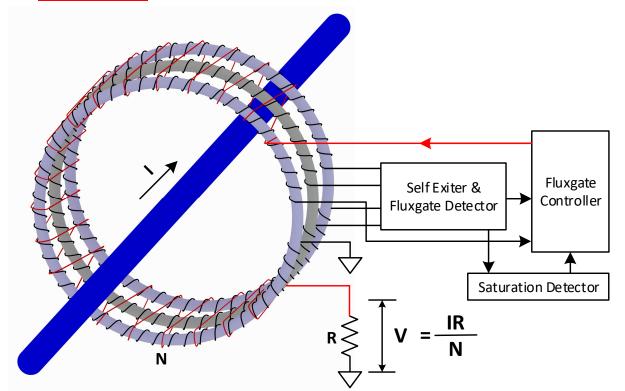

- Plastic case and insulating resin are self-extinguishing.
- Fixing holes in the case molding for two positions at right angles
- Direction of the current: A primary current flowing in the direction of the arrow results in a positive secondary output current from terminal C_{OUT}.

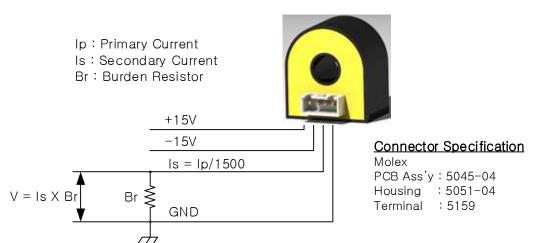

- 2/4 -


>>> FCT100AB15AY


Dimensions


1 : +15V 2 : -15V 3 : Cout 4 : GND





Block diagram

- 3/4 -

* The positive direction of the current from the front to the rear of the head (the front of the contactor).

 $(Secondary_Resistance + Measuring_Resistance) \times Max_Secondary_Current + 3V = 15V$ $Measuring_Resistance = (15 - 3) / Max_Secondary_Current - Secondary_Resistance$ $Therefore, Meauring_Resistance = 12/(120/1500) - 130 = 20 \ \Omega$

Caution

Be careful not to operate under 1Ω burden resistor. The current sensor is damaged.